Homogenization of the Eigenvalues of the Neumann-poincaré Operator
نویسندگان
چکیده
In this article, we investigate the spectrum of the Neumann-Poincaré operator associated to a periodic distribution of small inclusions with size ε, and its asymptotic behavior as the parameter ε vanishes. Combining techniques pertaining to the fields of homogenization and potential theory, we prove that the limit spectrum is composed of the ‘trivial’ eigenvalues 0 and 1, and of a subset which stays bounded away from 0 and 1 uniformly with respect to ε. This non trivial part is the reunion of the Bloch spectrum, accounting for the collective resonances between collections of inclusions, and of the boundary layer spectrum, associated to eigenfunctions which spend a not too small part of their energies near the boundary of the macroscopic device. These results shed new light about the homogenization of the voltage potential uε caused by a given source in a medium composed of a periodic distribution of small inclusions with an arbitrary (possible negative) conductivity a, surrounded by a dielectric medium, with unit conductivity. In particular, we prove that the limit behavior of uε is strongly related to the (possibly ill-defined) homogenized diffusion matrix predicted by the homogenization theory in the standard elliptic case. Additionally, we prove that the homogenization of uε is always possible when a is either positive, or negative with a ‘small’ or ‘large’ modulus.
منابع مشابه
Pointwise bounds on the gradient and the spectrum of the Neumann-Poincaré operator: The case of 2 discs
We compute the spectrum of the Neumann-Poincaré operator for two discs in R2. We show how the behavior of the eigenvalues relates to W 1,∞ estimates on the potential in 2D composites containing circular inclusions.
متن کاملOn Generalization of Sturm-Liouville Theory for Fractional Bessel Operator
In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...
متن کاملOn the uniform Poincaré inequality
We give a proof of the Poincaré inequality in W (Ω) with a constant that is independent of Ω ∈ U , where U is a set of uniformly bounded and uniformly Lipschitz domains in R. As a byproduct, we obtain the following : The first non vanishing eigenvalues λ2(Ω) of the standard Neumann (variational) boundary value problem on Ω for the Laplace operator are bounded below by a positive constant if the...
متن کاملAsymptotic distributions of Neumann problem for Sturm-Liouville equation
In this paper we apply the Homotopy perturbation method to derive the higher-order asymptotic distribution of the eigenvalues and eigenfunctions associated with the linear real second order equation of Sturm-liouville type on $[0,pi]$ with Neumann conditions $(y'(0)=y'(pi)=0)$ where $q$ is a real-valued Sign-indefinite number of $C^{1}[0,pi]$ and $lambda$ is a real parameter.
متن کاملAsymptotic distribution of eigenvalues of the elliptic operator system
Since the theory of spectral properties of non-self-accession differential operators on Sobolev spaces is an important field in mathematics, therefore, different techniques are used to study them. In this paper, two types of non-self-accession differential operators on Sobolev spaces are considered and their spectral properties are investigated with two different and new techniques.
متن کامل